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A B S T R A C T

Organizations focus on determining optimal operating conditions to ensure quality; however, industrial pro-
cesses exhibit a high degree of variability and the use of robust estimators is a suitable alternative to model
experimental data. As a case study, the surface roughness (Ra) of an AISI 12L14 steel turning process is optimized
to find a centrality measure close to its target with minimum dispersion and thus improve the quality of the
machined surface by choosing the best values of the associated parameters. The main contribution of this re-
search is the proposal of a multiobjective optimization method that uses principal components analysis to
minimize the redundancy of objective functions in terms of multivariate mean square error, thus making opti-
mization of the process possible with a better explanation of all centrality and dispersion estimators proposed
herein. The method uses a fuzzy decision maker to show the surface roughness' optimum result with the most
efficient production taken into consideration. To prove its efficiency, confirmation runs were conducted. At a
confidence level of 95%, the optimal value falls within the multivariate confidence intervals only for Model B, in
which the estimators' median and median absolute deviation are considered, thus affirming which pair of es-
timators achieves the most robust parameter design solution. Through the proposed research, the developed
model can be used in industries for determining machining parameters to attain high quality with minimum
power consumption and hence maximum productivity.

1. Introduction

Organizations that try to focus on optimum operating conditions
must ensure quality and continuously search for improvements. They
aim at minimizing the uncertain measurements that provide variation
and affect accuracy. Measurement uncertainties affect the responses (y)
and also the predictor variables (x); therefore, it is reasonable to use
robust analysis tools to minimize these effects. In that scope, the design
of experiments (DOE) approach is a particularly excellent tool for op-
timizing certain process quality characteristics [1]. Many researchers
have applied the response surface methodology (RSM), in which one
aims to discern answers that are influenced by some variables to opti-
mize results. The principal objective is to obtain an adequate model
from a sequence of designed experiments to obtain optimal operating
conditions for the process [2,3].

Experimentation directs the development and improvement of ex-
isting processes and facilitates the development of robust processes that
are minimally affected by variation of external agents. The processes

that produce minimal variation in the presence of noise fall under the
category of robust parameter design (RPD), which is an engineering
methodology intended to be a cost-effective approach to improving
product quality [4].

RPD was allied with the RSM approach by Myers and Carter [5].
They were aiming to solve problems in which the experimenter was
able to identify a primary response to be optimized by being limited to a
specific value of average or variance as the secondary response. This
idea was popularized by Vining and Myers [6], who pointed out that
the objective of optimizing the mean xμ̂ ( ) and variance xσ̂ ( )2 si-
multaneously could be achieved through the dual-response surface
method.

Consequently, estimators of mean and variance are normally used.
Industrial processes, however, often exhibit high variability in repeated
observations. This approach raises a question pointed out by Boylan
and Cho [7]: Which robust estimators achieve the best RPD solutions?
Therefore, in this work, we compare eight dual-response surface models
to define the best. The first model (Model A) comprises a sample mean
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and standard deviation and the remaining models (B–H) comprise the
nonparametric estimators as described in Table 1.

These eight dual-response surface models were grouped through a
principal components analysis (PCA) that solves the dependence and
neutralizes the effects of the correlation coefficients of multiple objec-
tive functions and also enables a dimensionality reduction in the
number of objective functions [8]. The approach proposed herein in-
volves calculations of a dataset covariance matrix to minimize re-
dundancy and thus make it possible to optimize the process with a
better explanation of estimators.

The optimization proposed applies an algorithm to the principal
component scores originated by centrality and dispersion objective
functions. The next step is to optimize the scores through the multi-
variate mean square error (MMSE) that combines the techniques of
RSM and PCA for multiobjective optimization problems and considers
the correlation structure among answers. The idea is to determine the
vectors of decision variables that simultaneously satisfy functions and
restrictions to find an acceptable value for each response [9]. To
complete the proposal, the normal boundary intersection (NBI) method
is chosen to construct a convex and equispaced Pareto frontier capable
of obtaining a feasible set of solutions [10]. A fuzzy decision maker
(DM) then provides the best solution of process input parameters to
improve the manufacturing process.

Therefore, in our multiobjective optimization, we implement the
algorithm on the AISI 12L14 steel turning process with an ISO P35 hard
metal tool [11], using a crossed array. The data address the influence of
control and noise variables. This case study was performed in a central
composite design (CCD) with three input/control factors: cutting speed
(Vc), cutting feed (fn), and machining depth (ap); also considered as
noise variables are piece slenderness z( )1 , tool flank wear z( )2 , and
measurement position z( )3 evaluation as a response to sample surface
roughness, Ra. Accordingly, the proposed algorithm determines the
setup of the turning process control/input parameters that are capable
of achieving reduced surface roughness with minimal variance.

Analogously, by considering the noises z( )1 and z( )3 , this work will
address the following research issue: ensuring that the piece roughness
is the same throughout its length despite the measurements not being
stationary. Two critical objectives in surface tool path optimization are
machining accuracy and process efficiency and thus providing a surface
machining error. In order to determine optimal tool path parameters
that will simultaneously satisfy the tradeoff incurred between these
objectives, techniques of optimization are presented [12,13].

Also, making the optimum choice of cutting parameters and tool
path design can save ∼6%–40% in the energy used in mechanical
processes, which are widely used in the manufacturing industry and
consume more energy than any other industrial process [14]. The op-
erational ranges of cutting parameters must not negatively impact the
quality of machined parts, material removal rate, or productivity.

This paper is organized as follows: Section 2 presents a theoretical
reference for nonparametric estimators that can be used to model the
roughness and thus provides a problem with multiple responses. The

explanation of problem dimensionality reduction is described in Section
3. Section 4 presents the proposed algorithm used to solve multi-
objective problems. Problem resolution and a discussion of numerical
results are detailed in Section 5. Finally, Section 6 includes some con-
clusions and extensions.

2. Nonparametric estimators

It is known, in most cases, that the responses of a dynamic process
are difficult to measure, which motivates the exploration of effective
robust estimators. In this case, the robust term describes the ability an
estimator has to overcome the outliers' impact on the process estimate
responses [15].

The main objective of robust design is to obtain the optimum con-
ditions of input variables to minimize the variability associated with the
quality characteristic analyzed in the process while also keeping the
process mean at the target value. In this context [16], the response
surface approach uses the ordinary least squares method to obtain
adequate response functions for the process mean and variance under
the assumptions that the experimental data are normally distributed
and that there is no major contamination in the data set. However,
these assumptions may not hold in modeling many real-world industrial
problems. The sample mean and variance are efficient under the normal
distribution, but they are very sensitive to contamination or departures
from the normality assumption. To remedy this problem, we propose
modeling the data set by efficient and outlier-resistant estimators as
detailed in Table 1.

2.1. Comparative study among robust estimators

The robust estimators are compared according to the following
properties [17,18]: (1) the breakdown point, which represents the
maximum fraction of outliers that can be added to a given sample
without spoiling the data estimate, and (2) the relative efficiency,
which is assigned to the normality. The breakdown point cannot exceed
the value of 50% because, if more than half of the observations are
contaminated, it is not possible to distinguish between the subjacent
and contaminated distributions [17].

2.1.1. Median and median absolute deviation
The median is characterized as a measure of central tendency and

offers the advantage of being very insensitive to the presence of outliers
[19]. According to Rousseeuw and Croux [20], the median absolute
deviation (MAD) is characterized as a very robust scale estimator that
has been researched [21] and was discovered and popularized by
Hampel [22]. If = …x x x x( , , , )n1 2 is a data set, then the sample median is
defined by

= ⋅ −MAD b x xmed | med |i i j j (1)

The constant b in Eq. (1) is set to the value b =1.4826 to relate the
normality assumption and thereby disregard the abnormality induced
by outliers. Both the median and the MAD have a breakdown point of
50% which is the highest possible. This characteristic is related to how
strongly the outliers have an effect; however, these measure are also
well known for their comparative lack of efficiency under normality,
being 64% and 37% for each, respectively [23].

2.1.2. Sn and Qn scale estimators
Rousseeuw and Crox [23] proposed two scale estimators with

breaking points of 50% but that are more efficient than the MAD. The
first is S ,n which has a relative efficiency equal to 58% (superior to that
of the MAD) and as defined by

= ⋅ −S c x x1.1926med {med | |}n n i j i j (2)

The other estimator proposed is Qn, which shares the same attrac-
tive properties of the Sn estimator, has a break point of 50%, is also

Table 1
Combination of estimators used in comparative analysis.
Source: Adapted from Boylan and Cho [7].

Model Location estimators Scale estimators

A Sample mean x( ¯) Standard deviation s( )
B Median x(˜) Median absolute deviation
C Huber's Proposal 2

x(˜ )H2

Huber's Proposal 2 S( )H2

D Hodges–Lehmann estimator HL( )n Sn estimator
E Hodges–Lehmann estimator HL( )n Qn estimator
F Tau x(˜ )τ Tau s( )τ
G Hodges–Lehmann estimator HL( )n Median absolute deviation
H Maximum likelihood estimator x(˜ )MLE Maximum likelihood

estimator s( )MLE
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appropriate for asymmetric distributions, and has a very high relative
efficiency of ∼82%. Furthermore, it has a simple and explicit formula:

= ⋅ − <Q d x x i j2,2219{| |; }n n i j (3)

2.1.3. HLn location estimator
The HLn location estimator is an estimator proposed by Hodges and

Lehmann [24] and it is known for its excellent overall performance in
terms of efficiency and resistance in relation to outliers. This location
estimator has the relative efficiency of ∼86% and thus is highly com-
petitive with the mean under the normal distribution, although it has a
break point of 29% [25]. If = …x x x x( , , , )n1 2 is a data set where the
estimator is obtained by the median of all pairwise averages, then HLn
is defined by

=
+

HL
x x

med{
2

}n
i j

(4)

2.1.4. Huber's proposal 2 estimators
Lee et al. [16] investigated the M-estimation approach proposed by

Huber [26] as a highly efficient alternative to the median and the MAD.
Huber's Proposal 2M-estimators have a high efficiency; the location
estimator has a relative efficiency of 96% and the scale estimator has an
efficiency of 80%. Huber [27] proposed the simultaneous solution for μ
and σ:
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where the data set is = …x x x x( , , , )n1 2 .

2.1.5. Tau estimators
Maronna and Zamar [28] developed tau estimators to reduce the

computational complexity and associated times in relation to other
robust estimators with a high breaking point. If = …x x x x( , , , )n1 2 is a
data set, then the estimators are
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Both estimators combine relatively high efficiency (80% for each)
with high resistivity when c1 =4.5 and c2 =3.0.

2.1.6. Maximum likelihood estimators
Finally, maximum likelihood estimators (MLE) of location and scale

will form the last couple of estimators. They estimate different para-
meter values of a statistical model to maximize the observed data
probability under the assumption of a normal distribution [29].
O'Hagan and Leonard [30] introduced inclined distributions for the
MLE because the distribution of a normal inclination is reduced to
normal when α=0; the normality becomes a special case of a dis-
tribution that makes it possible to model symmetrical and asymmetrical
situations. Therefore, numerical parameters are estimated by max-
imizing the likelihood function with the components θ = (μ, σ, α) as
given by

∑ ∑= − − − +
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= =
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where = …x x x x( , , , )k1 2 is a data set and μ and σ are the location and
scale parameters, respectively.

3. Dimensionality reduction

PCA is concerned with explaining the variance–covariance structure
of variables set through a few linear combinations. Suppose that the
multiple objective functions …f x f x f x( ), ( ), , ( )p1 2 are correlated re-
sponse surfaces written as a random vector = …Y Y Y Y[ , , , ]T

p1 2 . If one
assumes that Σ is the variance–covariance matrix associated with this
vector, then Σ can be factorized in pairs of eigenvalues–eigenvectors

…≥λ e λ e( , ), ( , )i i p p , where ≫ ≫ …≫ ≫λ λ λp1 2 , such that the ith principal
component may be stated as = = + + …+PC e Y e Y e Y e Yi i

T
i i pi p1 1 2 2 , with

= …i p1, 2, , [31,32].
Analogously, PCA is one of the most frequently used multivariate

analysis techniques used to reduce the dimensionality of data sets
consisting of a number of correlated variables while retaining as much
of the variation as possible [33]. This technique uses an orthogonal
transformation to convert the set of observations into a new set of
uncorrelated variables. The number of principal components is less than
or equal to the number of original variables, and the first few principal
components retain most of the variation present in all of the data set
[34]. To identify the k significant principal components, one uses Kai-
ser's criteria, where only those principal components whose eigenvalues
are> 1 should be retained to represent the original variables. Fur-
thermore, the k principal components may accumulate at least 80% of
variance [31].

PCA can be derived from multivariate normal random variables,
distributed as μ ΣN ( , )p . The density of random variable Y is constant on
the μ centered ellipsoid such as

− ′ − =−y μ Σ y μ c( ) ( )1 2 (11)

Equation (11) is an ellipse equation centered at the mean vector
with half-axes equal to ± = …c λ e i p, 1, 2, , ,i i where λ e( , )i i re-
presents the eigenvalue–eigenvector pairs of Σ. In terms of eigenvalues
and eigenvectors of the covariance matrix, it may be written as
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A constant-density ellipse and the principal components for a bi-
variate normal random vector with interval confidence (1−α) are
shown in Fig. 1. Compared to the original variables, principal compo-
nents will not influence each other owing to their uncorrelated nature,
which may greatly improve the efficiency for data analytics [35].

The appropriate way to evaluate numerically the adequacy of a
multivariate optimization solution in comparison to mathematical so-
lutions is to build a multivariate confidence interval or a multivariate
confidence region. If one supposes there are p characteristics and n
confirmation runs and considers that the pth characteristic is normally
distributed as N (y s¯ ,p pp), then the 100 (1-α)% multivariate confidence is
given by
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This multivariate confidence interval will be used in this work to
represent the results of confirmation runs. If the method is effective in
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finding multiobjective optimization results, then the sample mean of
these runs will fall inside the 100 (1−α)% confidence region.
Analogously, a two-dimensional confidence ellipse for the mean vector
is defined [31] as
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where ≤ ≤θ π0 2 .

4. Proposed multiobjective optimization

The optimization of multiple process characteristics without con-
sideration of the variance–covariance structure among the responses
may lead to an inadequate solution. To treat this constraint, in this
section we focus on the MMSE approach [36], which combines the RSM
and PCA to address multidimensional nominal-the-best problems.
Mathematically, the MMSE can be established as a multivariate dual-
response surface, such as

= ∏ ≥
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where
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= … = …i p j q1, 2, 3, , ; 1, 2, 3, ,

and k is the number of MMSE functions according to the significant
principal components, PCi is the fitted second-order polynomial, ξPCi is
the target value of the ith principal component that must keep a direct
relation with the targets established for the original dataset, g x¯ ( ) is the
experimental region constraint, ei represents the eigenvector set

associated with the ith principal component, and ξYp represents the
target for each of the p original responses.

Multiple correlated responses agglutinated in terms of principal
component scores and then optimized by using the MMSE approach
have the objective of obtaining the Pareto optimal solutions for a bi-
objective frontier. In this scenario, the NBI method [10] is applied to
find a uniform distribution of Pareto optimal solutions for nonlinear
multiobjective problems. Also, it compensates for the shortcomings
attributed to other methods because the NBI method is independent of
the functions' relative scales and is successful in producing an evenly
distributed set of points [9]. Other research in which optimization
techniques have been developed to improve manufacturing processes
can be seen in Refs. [37,38].

4.1. NBI method

The first step in the NBI method [10] comprises establishment of the
payoff matrix Φ that represents the optimal values of each objective
function minimized individually as represented by

=
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where ∗xi is the vector of variables that minimizes the ith objective
function f x( )i individually, ∗ ∗f x( )i i is the minimum value of objective
function fi , and

∗f x( )j i is the value of objective function f j evaluated for
a solution that minimizes the function fi. Through Φ, it is also possible
to define some important points such as the Utopia ( f U ) and Nadir
points ( f N ) that represent the minimum and maximum values of fi,
respectively.

Accordingly, the NBI formulation for a bidimensional problem can
be described as

f xMinimize ¯ ( )1 (18)

= − + − =g x f x f x wsubject to ¯ ( ) ¯ ( ) ¯ ( ) 2 1 01 1 2

x1

x2 e2
e1

2

1

Fig. 1. Constant density ellipse.
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= ≤g x x x ρ¯ ( ) T
2

2

≤ ≤w0 1

where w are weights that establish the trade-off relationship between
f x¯ ( )1 and f x¯ ( )2 and where ρ is the radius of the spherical experimental
region of the turning process. Because f x¯ ( )1 and f x¯ ( )2 are scalarized
objective functions, they can be represented as
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−
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By considering =f x MMSE x( ) ( )i i , =f MMSE x( )i
U

i
U , and

=f MMSE x( )i
N

i
N to develop the scalarization described in Eqs. (19)

and (20), a bidimensional NBI method can be rewritten as

=

= − +

− =
= ≤

≤ ≤

−
−

−
−

−
−

f x

g x w

g x x x ρ
w

Minimize ¯ ( ) ( )

Subject to ¯ ( ) ( ) ( ) 2

1 0
¯ ( )

0 1

MMSE x MMSE x
MMSE x MMSE x

MMSE x MMSE x
MMSE x MMSE x

MMSE x MMSE x
MMSE x MMSE x

T

1
( ) ( )
( ) ( )

1
( ) ( )
( ) ( )

( ) ( )
( ) ( )

2
2

U

N U

U

N U

U

N U

1 1

1 1

1 1

1 1

2 2

2 2

(21)

In sequence, the optimization problem in this study can be solved
for different weights (w) and thus create an evenly distributed Pareto
frontier.

4.2. Fuzzy multivariate mean square error

After the Pareto set is obtained, the most desired solution con-
cerning the roughness surface must be chosen by means of a fuzzy DM
that calculates a linear membership function for each objective function
in every Pareto optimal solution [39]. Within all of the nondominated
and feasible solutions available on the frontier, some solutions may be
more appropriate than others. The best solution may be found by fol-
lowing a fuzzy criterion [40,41] using a linear membership, such as
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where MMSEi
U and MMSEi

N correspond to the Utopia and Nadir points,
respectively. The values obtained through Eq. (22) suggest how far a
nondominated solution satisfies the fi objective. Thereby, the total
membership function of each Pareto optimal solution is computed by
considering the individual membership functions and their relative
importance (wi) such as

∑=
=

μ w μT

n

i

i i
1 (23)

The better solution is the one has the highest value of the total
membership function (μT) as close to its respective Utopia.

5. Research development

To achieve the goal of this research, an AISI 12L14 steel turning
process is defined as the case study (Fig. 2). It was performed with a set
of 17 experiments on a computer numerical control (CNC) lathe (Nar-
dini model Logic 175) with numerical control provided by a CNC MCS
500, having a power of 7.39 HP, and with a maximum rotation spindle
of 4000 rpm. The cutting tool used is the hard metal of class ISO P35
coated with three covers (Ti (C, N), Al2O3, and TiN), (GC 4035 Sandvik)

of geometry ISO SNMG 09 03 04 – PM. To illustrate the proposed re-
search, the work is developed through the following 8 steps as detailed
in Fig. 5.

Step 1: Collect the AISI 12L14 steel turning process data set col-
lected from a set of 17 experiments using a central composite design
(CCD) with three parameters (Vc, fn, and ap) at two levels (2k=23=8),
six axial points (2k=6), and three center points. These parameters
strongly influence whether good results are obtained in the turning
process in terms of the product's surface finish. The adopted value for
the axial distance α was 1.682. The experimental planning was per-
formed at three different levels of input parameters as listed in Table 2.
Also, the noise variables with their respective levels are given in
Table 3.

The output variable represents the workpiece surface roughness,
defined as Ra (the arithmetic mean value of roughness profile's devia-
tions from the mean line within the measurement length). To determine
the roughness value of each workpiece in three regions (Fig. 3(a)) a
MITUTOYO Surftest SJ-201P rugosimeter was used. A total of 68
workpieces were machined and 12 measuring points each were iden-
tified (4 measurement points 90° distant from each other relative to a
cross section) in each of the three measuring regions. For each of the 12
measured points, the measurement was made three times and thus each
combination of noise gave a calculated mean value.

Table 4 lists the Ra experimental data obtained through a cross-over
arrangement in which 12 noise conditions were taken into account.
These noise conditions provide the non-normality of the data and thus
provide the variation with extreme points as shown in Fig. 4; this time
series is not stationary and therefore the mean is no longer appropriate.
Consequently, the scenario emphasizes the use of robust estimators to
model the data.

Step 2: The experimental data are modeled by the location and scale
estimators as listed in Table 1. As a result, Table 5 gives the values
obtained through the estimators with the 12 noise conditions taken into
account.

Step 3: To verify whether there is a dependence relationship among

Fig. 2. AISI 12L14 turning process.

Table 2
Control variables and respective levels.

Control variables Unit Symbol Level

−1 0 +1

Cutting speed m/min Vc 220 280 340
Cutting feed mm/rev f 0.08 0.10 0.12
Machining depth mm d 0.70 0.95 1.20

Table 3
Noise variables and respective levels.

Noise variables Unit Symbol Level

−1 0 +1

Workpiece diameter mm ϕ 50 – 30
Tool flank wear mm VB 0.0 – 0.3
Measurement position – P CP CE CA
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the responses detailed in Table 5, a cluster analysis of these multiple
responses was performed. A dendogram was obtained with the corre-
lation distance measure through the Ward linkage method as shown in
Fig. 6. Therefore, the 13 original responses are separated into two
clusters: Cluster 01 (x s x s¯, , ˜ , andMLE MLE) and Cluster 02
(x MAD x s HL S Q x S˜, , ˜ , , , , , ˜ , andH H n n n τ τ2 2 ).

Step 4: As the dependence of multiple responses is confirmed, PCA
can be applied. Using the correlation matrix, principal component
scores must be extracted and stored with the respective eigenvalues and
eigenvectors of the original responses. Table 6 lists the relevant prin-
cipal component scores that represent the original responses.

Step 5: With the significant principal components that represent the
original responses defined, the ordinary least squares (OLS) method is
applied to estimate the coefficients of a second-order polynomial ac-
cording to the response surface methodology. A full quadratic model of
each principal component is obtained as shown in the following

equations:

= + − + − −

− + + −

PC C V f a V f

a V f V a fa

1.596 0.336 0.646 1.185 0.293 0.963

0.732 0.457 0.020 0.910

c p c

p c c p p

1 1
2 2

2
(24)

= + − + − −

− + + −

PC C V f a V f

a V f V a fa

3.3711 0.803 1.138 0.444 1.891 1.721

1.007 0.603 0.225 0.685

c p c

p c c p p

1 2
2 2

2
(25)

= + − − + −

− − + +

PC C V f a V f

a V f V a fa

0.234 0.238 1.023 0.621 0.0591 0.185

0.166 0.129 0.209 0.188

c p c

p c c p p

2 2
2 2

2
(26)

Figs. 7–9 show the response surfaces in terms of process parameters
that illustrate the quadratic models detailed in Eqs. (24)–(26).

Step 6: After the conclusion of the modeling stage, the optimization
is then applied. However, before starting the optimization, it is neces-
sary to define the MMSEi object functions as represented in Eq. (15).

(b)

(a) (c)
Fig. 3. (a) Distribution of measurement points in each workpiece, (b) New tool edge ISO P35, and (c) Wear tool edge ISO P35 [42].

Table 4
Ra experimental data.

k Noise conditions

1 2 3 4 5 6 7 8 9 10 11 12

Workpiece diameter [mm] −1 −1 −1 −1 −1 −1 +1 +1 +1 +1 +1 +1
Tool flank wear [mm] −1 −1 −1 +1 +1 +1 −1 −1 −1 +1 +1 +1
Measurement position −1 0 +1 −1 0 +1 −1 0 +1 −1 0 +1
i Vc [m/min] f [mm/rev] d [mm] x j¯i 1 x j¯i 2 x j¯i 3 x j¯i 4 x j¯i 5 x j¯i 6 x j¯i 7 x j¯i 8 x j¯i 9 x j¯i 10 x j¯i 11 x j¯i 12
1 220 0.08 0.70 0.79 0.86 0.83 1.53 1.78 2.32 3.83 0.98 1.05 0.87 0.75 0.78
2 340 0.08 0.70 0.73 0.75 0.80 1.36 2.06 2.25 3.97 1.03 1.02 3.14 1.87 0.85
3 220 0.12 0.70 1.09 1.16 1.17 1.84 2.30 2.15 3.51 1.41 1.48 1.80 1.74 1.74
4 340 0.12 0.70 1.16 1.15 1.26 1.87 2.56 2.43 1.57 1.50 1.49 3.28 1.83 1.98
5 220 0.08 1.20 1.14 1.36 1.26 1.30 1.59 2.11 9.60 1.47 1.69 2.24 1.38 1.45
6 340 0.08 1.20 1.17 0.95 0.90 1.47 1.42 1.80 4.18 1.44 1.60 7.15 3.15 1.31
7 220 0.12 1.20 1.55 1.58 1.59 1.69 1.68 1.73 1.95 1.54 1.58 3.10 2.02 1.87
8 340 0.12 1.20 1.56 1.69 1.62 1.54 1.64 1.65 3.45 1.57 1.62 5.53 3.13 1.81
9 180 0.10 0.95 1.30 1.11 1.13 1.40 1.71 1.53 4.80 1.31 1.37 3.63 1.84 1.65
10 380 0.10 0.95 1.01 0.95 1.04 1.96 1.87 1.74 5.44 1.53 1.41 4.35 2.39 1.36
11 280 0.07 0.95 1.47 1.31 1.33 2.16 2.01 1.87 4.13 2.08 1.26 2.83 1.09 0.66
12 280 0.13 0.95 1.36 1.39 1.46 2.33 2.00 1.92 3.41 1.55 1.52 1.78 1.71 1.73
13 280 0.10 0.53 1.16 1.22 1.27 2.23 2.35 2.49 1.27 1.07 1.10 2.60 1.67 1.76
14 280 0.10 1.37 1.47 1.36 1.40 2.09 2.52 2.49 5.22 1.32 1.26 3.37 2.66 2.51
15 280 0.10 0.95 1.26 1.31 1.42 2.42 2.18 2.20 6.69 1.21 1.20 3.10 2.78 2.06
16 280 0.10 0.95 1.14 1.30 1.32 2.19 2.29 2.29 6.28 1.16 1.14 2.79 3.01 1.96
17 280 0.10 0.95 0.93 0.99 1.15 2.53 2.41 2.37 6.06 1.15 1.18 3.20 2.99 3.62
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The MMSE method is used to minimize all the original responses si-
multaneously with their respective targets expressed in terms of prin-
cipal components.

The chosen component for Cluster 01 is PC1C1, as detailed in Eq.
(24), and its respective MMSE objective function can be expressed as

= = − +[( ) ]f x MMSE PC C ξ λ( ) PC C PC C1 1
1

1 1
2

1 1 1 1 (27)

with

= + +

+

[ ( )] [ ( )]
[ ( )]

e Z x e Z s e Z x

e Z s

ξ ¯|ξ [ ( |ξ )] ˜ |ξ

|ξ

PC C x s MLE x

MLE s

1 ¯ 2 3 ˜

4

MLE

MLE

1 1

(28)

where the targets expressed in Eq. (28) are calculated and resulted in
ξPC C1 1 =−3.546. λPC C1 1 is the eigenvalue detailed in Table 6 and the
e( )i are their respective eigenvectors.

The same approach is done for Cluster 02, where the MMSEi object
functions are calculated for both principal components, PC1C2 and
PC2C2. The targets are expressed in terms of principal components and
result in ξPC C1 2 =−3.935 and ξPC C2 1 =0.929 as detailed in

= +

+ + +

+ + +

+

[ ( )]
[ ( )] [ ( )] [ ( )]
[ ( )] [ ( )] [ ( )]
[ ( )]

e Z x e Z MAD

e Z x e Z s e Z HL

e Z S e Z Q e Z x

e Z S

ξ ˜|ξ [ ( |ξ )]

˜ |ξ |ξ |ξ

|ξ |ξ ˜ |ξ

|ξ

PC C x MAD

H x H s n HL

n S n Q τ x

τ S

1 ˜ 2

3 ˜ 4 5

6 7 8 ˜

9

i i

H H n

n n τ

τ

2 2 2 2

(29)

Because Cluster 02 has two MMSEi functions, MMSE1
2 and MMSE2

2

must be multiplied together according to

=

= − + − +{[( ) ] [( ) ]}
f x MMSE

PC C PC C

( )

ξ λ . ξ λ

T

PC C PC C

2
2

1 2
2

1 2 2
2

2
( 1

2 )
1 2 2 2

(30)

Because the objective functions f1(x) and f2(x) were defined in
terms of the MMSE, the NBI method of optimization is adopted to de-
termine the Pareto optimal solutions. The first step comprises estab-
lishment of the payoff matrix Φ and, to execute the individual opti-
mization, the generalized reduced gradient (GRG) algorithm is applied.
As a result, the Utopia and Nadir points are represented by

= ⎡
⎣

⎤
⎦

Φ 3.823 16.314
5.870 3.189 (31)

Therefore, it is possible to stagger the objective functions according
to Eqs. (27) and (30) for bivariate optimization such as

=
⎧

⎨
⎩

=

=

−
−

−
−

f x
f x

f x
¯ ( )

¯ ( )

¯ ( )

MMSE x

MMSE x

1
( ) 3.823

16.314 3.823

2
( ) 3.189

5.870 3.189
T

1
1

2

(32)

Step 7: Scalarization of the objective functions represented by Eqs.
(27) and (30) is performed to conduct the NBI method through appli-
cation of the GRG algorithm in the system of equation (21). The algo-
rithm runs in 5% increments in the weight range. Therefore, 21 Pareto
optimal points are obtained, as detailed in Table 7.

The uncoded values of input parameters (Vc, f, and d) are also de-
tailed in Table 7. It is possible to determine the optimal operational
range that can be adopted in the process by considering a minimum
variation in the surface roughness (Ra) measures. Fig. 10(a) illustrates a
bi-objective Pareto frontier of both functions in terms of the MMSE. The
feasible region comprising all the original response surfaces is illu-
strated in Fig. 11, where the lower and upper limits of responses are as
detailed in Table 8.

Although all 21 Pareto solutions can be considered optimal solu-
tions, in manufacturing processes, the purpose is to find a unique op-
timal point. In this way, one implements the fuzzy DM, where the
weighting factors are considered a ratio between the individual mem-
bership (μi) and the sum of both individual membership functions.
Fig. 10(b) shows the result obtained of total membership (μT) for Ra and
also highlights the better solution, which is the one with the highest
value (Table 7). Each Pareto optimal solution achieves its fuzzy DM
value that defines a better weight composition; as a result, the highest
defined value of μT , 95.00% for Cluster 01 and 5.00% for Cluster 02, is
used to determine a minimal variation for scale estimators. By using
these weights, the optimum result for surface roughness (Ra) is found to
be equal to 1.461 with a minimal variation to 0.533. Also, the best
process input parameters according to the defined weights are equal to
Vc=273.853 [m/min], f=0.084 [mm/rev], and d=0.583 [mm].

Also, the optimized original responses assigned to Ra can be seen in
Table 9. These measures of centrality and dispersion were obtained
through the NBI optimization and are equivalent to the objective
functions f1(x) and f2(x) in terms of the MMSE.

Step 8: After the optimal point is defined, confirmation experiments
are needed. Therefore, power and sample size capabilities were eval-
uated to ensure enough power and a large enough sample size to detect

Fig. 4. Ra experimental data with noise conditions.
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Step 02: Model the surface roughness (Ra)
by location and scale estimators

Step 03: Cluster Analysis

Mathematical
models

Step 01: Run the experimental design

The AISI 12L14 steel-
turning process

Step 05: Apply the Ordinary Least Squares (OLS)

Cluster 01: Cluster 02:
Step 04: PC Analysis

Extraction and storage PCs scores

Cluster 01:
PC1: 86.30%

Cluster 02:
PC1, PC2: 86.60%

Step 06: Define the objective functions in terms
of MMSE and optimize by NBI method

Step 07: Find the Pareto optimal points and
choice the best solution by the Fuzzy

Decision Maker

Step 8: Execute the confirmation runs and
choice the best pair of estimators

15.012.510.07.55.0

6.0

5.5

5.0

4.5

4.0

3.5

3.0

MMSET - Cluster 02*MMSE - Cluster 01

Solution:
Vc = 273.853 m/min,
fn = 0.084 mm/rev
d = 0.581 mm

Conclusion

Fig. 5. Development of research methodology.

Table 5
Values obtained for Ra in the modeling by estimators.

x̄ s x̃ MAD x̃H2 SH2 HLn Sn Qn x̃τ sτ x̃MLE sMLE

1.356 0.923 0.927 0.241 1.192 0.600 1.163 0.282 0.342 0.865 0.306 1.681 0.708
1.648 1.049 1.193 0.668 1.562 0.983 1.496 0.730 0.849 1.189 0.781 1.903 0.890
1.782 0.664 1.740 0.549 1.695 0.514 1.710 0.514 0.550 1.643 0.507 1.881 0.597
1.839 0.643 1.703 0.534 1.792 0.611 1.783 0.682 0.591 1.670 0.559 1.904 0.574
2.220 2.377 1.460 0.266 1.602 0.447 1.534 0.254 0.322 1.417 0.315 3.234 1.593
2.199 1.833 1.455 0.469 1.832 1.086 1.558 0.514 0.614 1.347 0.557 2.620 1.338
1.817 0.431 1.681 0.173 1.728 0.201 1.728 0.158 0.174 1.678 0.184 1.941 0.305
2.235 1.223 1.643 0.115 1.892 0.534 1.704 0.110 0.134 1.628 0.140 2.624 0.822
1.897 1.131 1.465 0.316 1.558 0.411 1.528 0.405 0.402 1.435 0.349 2.290 0.897
2.079 1.406 1.630 0.680 1.759 0.812 1.697 0.777 0.809 1.526 0.728 2.446 1.212
1.846 0.925 1.670 0.607 1.745 0.781 1.707 0.875 1.004 1.616 0.687 1.880 0.844
1.847 0.566 1.721 0.340 1.754 0.370 1.731 0.325 0.351 1.682 0.347 1.945 0.441
1.680 0.586 1.470 0.502 1.680 0.664 1.717 0.674 0.437 1.496 0.600 1.725 0.501
2.301 1.142 2.276 1.245 2.160 0.910 2.047 1.266 1.038 2.098 1.016 2.454 0.904
2.319 1.521 2.118 1.115 2.040 0.870 0.542 1.098 1.077 1.934 0.936 2.852 1.251
2.233 1.433 2.075 1.129 1.986 0.884 2.007 1.148 1.070 1.882 0.949 2.533 1.061
2.257 1.442 2.236 1.505 2.058 1.076 2.071 1.453 1.115 1.979 1.216 2.443 1.158
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differences of magnitude between the selected optimal points for Ra

using the fuzzy NBI-MMSE approach.
At a confidence level of 95%, the one-sample t-test was conducted to

confirm whether the optimal value obtained for surface roughness
through the proposed optimization algorithm falls within the

Fig. 6. Hierarchical clustering analysis.

Table 6
Scores of relevant principal components.

k Cluster 01 Cluster 02

PC1 PC1 PC2

1 −2.165 −3.969 2.381
2 −1.035 −0.337 2.435
3 −1.654 −0.579 −0.661
4 −1.589 −0.059 −0.578
5 3.836 −2.350 −0.321
6 2.154 −0.319 1.117
7 −2.185 −2.399 −2.067
8 0.855 −2.082 −1.693
9 −0.076 −2.114 −0.174
10 1.138 0.543 0.597
11 −0.930 0.808 0.522
12 −1.797 −1.417 −1.478
13 −2.223 −0.743 0.154
14 0.799 4.176 −1.001
15 2.184 2.836 1.081
16 1.303 3.192 −0.310
17 1.384 4.813 −0.003
Eigenvalue (λ) 3.4524 6.1707 1.6246
Proportion 0.8630 0.6860 0.1810
Cumulative 0.8630 0.6860 0.8660

Fig. 7. Response surfaces of PC1C1 built in terms of process parameters.

Fig. 8. Response surfaces of PC1C2 built in terms of process parameters.

Fig. 9. Response surfaces of PC2C2 built in terms of process parameters.
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multivariate confidence intervals for confirmation runs. With a power
of 80%, the hypothesis test can detect the difference of at least one pass
in the turning machine, as shown in Fig. 12, and with a pre-test value of
0.533 as standard deviation, the sample size is found to be 5. A series of
five experiments run under optimal experimental conditions with the
fuzzy NBI-MMSE approach yielded Vc=273.853 [m/min], f=0.084
[mm/rev], and d=0.581 [mm].

Surface roughness was measured at four points of the workpiece, at
90° intervals at diameters of 30 and 50mm, with flank tool wear values
of ∼0.0 and ∼0.3 mm (Fig. 13). The mean of these measurements are
reported on Table 10. Fig. 14 illustrates the snapshot from confirmation
run #5 in the worst case: 50mm of diameter and a flank tool wear of
0.3 mm.

Also, it is possible to infer from Fig. 15 that the variation of the
roughness in the piece (CP, CE, and CA) has become minimal. That is,

the optimum setup found for the machine provided similar roughness
measurements throughout the piece even if the piece is long. Therefore,
it is concluded that the roughness values measured under the 12 noise
conditions are smaller than those of the original experiment (run #13).
It can be seen that the mean values for Ra obtained with the con-
firmation runs are quite close to the predicted ones, which demon-
strates that the setup is robust to the presence of noise.

At a confidence level of 95%, the bidimensional confidence ellipses
for the dual-response surface models (A–H) were constructed to verify
whether the Pareto solution belongs to the ellipses' interval. Through
Fig. 16, it is noticed that the bidimensional confirmation run vector falls
within the confidence ellipse only in the representation of Model B, thus
affirming which model of estimators achieves the best RPD solution.
Tables 11 and 12 detail the confirmation runs modeled by location and
scale estimators and the upper and lower bounds for 95% multivariate

Table 7
Pareto optimal solutions for objective functions.

w Uncoded inputs f1(x)=MMSE11 f2(x)=MMSE2T Fuzzy DM (μT)

Vc [m/min] f [mm/rev] d[mm]

0.00 192.653 0.085 0.845 16.314 3.189 0.050
0.05 191.965 0.087 0.825 15.079 3.192 0.144
0.10 192.006 0.088 0.804 13.875 3.202 0.235
0.15 192.812 0.090 0.783 12.709 3.219 0.324
0.20 194.372 0.091 0.762 11.592 3.248 0.408
0.25 196.710 0.091 0.740 10.539 3.290 0.487
0.30 199.745 0.091 0.719 9.561 3.348 0.561
0.35 203.400 0.091 0.698 8.664 3.424 0.627
0.40 207.593 0.091 0.679 7.853 3.518 0.687
0.45 212.241 0.090 0.662 7.126 3.630 0.741
0.50 217.268 0.090 0.647 6.481 3.759 0.787
0.55 222.613 0.089 0.635 5.915 3.906 0.828
0.60 228.205 0.088 0.623 5.426 4.069 0.862
0.65 234.018 0.087 0.614 5.012 4.249 0.890
0.70 240.031 0.086 0.605 4.670 4.443 0.912
0.75 246.227 0.085 0.598 4.395 4.652 0.929
0.80 252.632 0.085 0.591 4.182 4.875 0.941
0.85 259.318 0.085 0.586 4.023 5.109 0.949
0.90 266.361 0.084 0.582 3.913 5.353 0.953
0.95 273.853 0.084 0.581 3.846 5.607 0.953
1.00 281.886 0.084 0.583 3.823 5.870 0.950

Note: Values in bold represent the optimal point obtained through the fuzzy DM.

15.012.510.07.55.0

6.0

5.5

5.0

4.5

4.0

3.5

3.0

20151050

1.0

0.8

0.6

0.4

0.2

0.0

MMSET - Cluster 02*MMSE - Cluster 01 T*x

(a) (b)

Fig. 10. (a) Pareto frontier obtained by the NBI method and (b) total membership.
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confidence intervals following the expression given by Eq. (13). Also
shown are the sum of squares that represents the squared differences of
each observation from the centroid, thus supporting the choice of
Model B because it has the lower value of distance.

As mentioned in Section 2, the breakdown point is a measure of
robustness of an estimator and, roughly, is the smallest fraction of
atypical points that can take the estimator beyond any limit. Both the
median and the MAD have a breakdown point of 50%, which is the
highest possible, thus reinforcing their robustness for modeling.

Because the results are compatible with the expected values and

turning theory, the fuzzy NBI-MMSE method may be considered sui-
table for improving the machining process even in the presence of noise
interference. In conclusion, modeling responses by using robust esti-
mators allowed an adequate representation of the surface roughness.

5.1. Machining parameters comparison

Since the best machining parameters were defined through the
proposed algorithm of optimization (NBI-MMSE) and thus confirmed by
confirmation runs, another comparison on the machined surface under

Vc

f

3210-1-2-3

3

2

1

0

-1

-2

-3

-1.277

-0.431

Vc

d

3210-1-2-3

3

2

1

0

-1

-2

-3

-1.277

-1.007

(a) (b)

f

d

3210-1-2-3

3

2

1

0

-1

-2

-3

-0.431

-1.007

(c)
Fig. 11. Overlaid contour graphics of original responses.

Table 8
Optimized values of the Ra modeled data.

Limit Location and scale response surfaces

x̄ s x̃ MAD x̃H2 sH2 HLn Sn Qn x̃τ sτ x̃MLE SMLE

Lower 1.444 0.298 1.095 0.167 1.322 0.296 1.279 0.231 0.272 1.068 0.277 1.491 0.246
Upper 2.412 1.926 2.203 1.273 2.103 1.108 1.900 1.271 1.148 2.001 1.070 2.899 1.383
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Table 9
Optimized values of the Ra modeled data.

w Location and scale estimators

x̄ x̃ x̃H2 HLn x̃τ x̃MLE s MAD sH2 Sn Qn sτ SMLE

0.00 1.721 1.171 1.337 1.298 1.126 2.273 1.372 0.172 0.429 0.238 0.302 0.235 1.022
0.05 1.705 1.170 1.337 1.299 1.123 2.230 1.319 0.179 0.436 0.241 0.296 0.240 0.990
0.10 1.690 1.172 1.340 1.302 1.122 2.185 1.265 0.191 0.448 0.247 0.295 0.248 0.956
0.15 1.675 1.176 1.346 1.307 1.124 2.138 1.210 0.205 0.463 0.259 0.297 0.260 0.922
0.20 1.659 1.180 1.353 1.314 1.127 2.089 1.155 0.223 0.481 0.274 0.302 0.274 0.887
0.25 1.643 1.185 1.361 1.322 1.131 2.039 1.101 0.243 0.501 0.294 0.310 0.291 0.852
0.30 1.627 1.189 1.369 1.330 1.135 1.989 1.048 0.264 0.523 0.317 0.321 0.310 0.817
0.35 1.609 1.192 1.377 1.339 1.139 1.939 0.997 0.286 0.546 0.341 0.333 0.331 0.782
0.40 1.591 1.194 1.385 1.347 1.142 1.891 0.948 0.308 0.569 0.368 0.348 0.352 0.749
0.45 1.573 1.194 1.392 1.356 1.144 1.843 0.901 0.330 0.591 0.395 0.364 0.374 0.716
0.50 1.554 1.192 1.399 1.364 1.146 1.797 0.855 0.352 0.613 0.422 0.381 0.396 0.685
0.55 1.536 1.191 1.405 1.373 1.149 1.752 0.811 0.373 0.634 0.450 0.401 0.418 0.655
0.60 1.519 1.191 1.413 1.382 1.153 1.709 0.768 0.394 0.654 0.477 0.422 0.441 0.626
0.65 1.503 1.192 1.421 1.393 1.159 1.668 0.726 0.416 0.673 0.506 0.445 0.466 0.598
0.70 1.489 1.196 1.431 1.406 1.167 1.630 0.686 0.439 0.692 0.535 0.469 0.491 0.572
0.75 1.478 1.202 1.443 1.421 1.177 1.596 0.648 0.464 0.711 0.566 0.495 0.518 0.548
0.80 1.470 1.211 1.456 1.437 1.190 1.565 0.612 0.490 0.730 0.597 0.522 0.547 0.527
0.85 1.465 1.221 1.471 1.455 1.204 1.539 0.580 0.517 0.748 0.629 0.551 0.576 0.509
0.90 1.462 1.233 1.486 1.473 1.220 1.518 0.553 0.543 0.765 0.661 0.580 0.605 0.495
0.95 1.461 1.244 1.501 1.491 1.235 1.502 0.533 0.569 0.782 0.692 0.612 0.635 0.487
1.00 1.464 1.254 1.515 1.508 1.249 1.494 0.521 0.592 0.799 0.720 0.645 0.663 0.486

Note: Values in bold represent the optimal point obtained through the fuzzy DM.

Fig. 12. Sample size calculation for confirmation runs (power= 80%; α=5%;
σ=0.533min).

(a) (b)

Fig. 13. AISI 12L14 turning microscope for VB of (a) ∼0.0 mm and (b) ∼0.3 mm.

Table 10
Confirmation run means for fuzzy NBI-MMSE method at w=0.95 for AISI
12L14 turning.

n ϕ 30mm –
VB=0.0

ϕ 50mm –
VB=0.0

ϕ 30mm –
VB=0.3

ϕ 50mm –
VB=0.3

1 1.184 0.858 1.378 1.683
2 0.997 0.905 1.450 1.677
3 0.808 0.764 1.654 1.783
4 1.178 0.851 1.585 1.777
5 1.005 1.010 1.494 1.982
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Fig. 14. Profile measure of worst condition (higher Ra) for diameter= 50mm
and VB=0.3mm.
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different parameters was done. This approach was performed in order
to compare the machined surface picture under the best condition with
pictures from other turning test.

Using the same power and sample size capabilities detailed on Step

8, Fig. 12 illustrates the best possible number of sample size which was
5. Therefore, a series of five experiments run under center point ex-
perimental condition yielded Vc=280.00 [m/min], f=0.10 [mm/rev],
and d=0.95 [mm]. These machining parameters input were chosen
since the center point runs provide a measure of process stability and
inherent variability and also check the model curvature.

Surface roughness was measured at four points of the workpiece, at
90° intervals at diameters of 30 and 50mm, with flank tool wear values
of ∼0.0 and ∼0.3mm (Fig. 13). The mean of these measurements are
reported on Table 13.

It is possible to infer from Fig. 17 that the variation of the roughness
in the center point machining parameters - Vc=280.00 [m/min],
f=0.10 [mm/rev], and d=0.95 [mm] – has not become minimal.
Therefore, it is concluded that the roughness values measured under the
12 noise conditions are equal than those of the original experiment (run
#13) and are greater than the optimum setup defined by the NBI-MMSE
algorithm of optimization. It can be seen that the mean values for Ra

obtained with the center point runs are higher to the predicted ones.
This analysis reinforces that the setup defined by NBI-MMSE is robust to
the presence of noise.

Through Fig. 18 it is noted that the surface finish chart fancy ma-
chining of confirmation run has shallower grooves in relation to the
experiment performed with the center point parameters. To determine
these pictures a Digital Microscope U1600X was used where the golden
color scale indicates the live center of each piece. Figs. 19 and 20 il-
lustrates the roughness snapshot from optimal setup and from center
point setup (setup of comparison); thus reaffirming that the surface
finish provided by the optimal setup (NBI-MMSE method) is better.

A scanning electron microscopy (SEM) was applied for surface
morphology examination. The workpieces' surfaces were analyzed in
the SEM with the objective of verifying the roughness on the machined
material. This experiment was developed in the Structural
Characterization Laboratory (ECL) of Federal University of Itajubá
(UNIFEI). Figs. 21 and 22 show the analysis of the machining peaks for
a feed rate of f=0.084 mm/rev and of f=0.100 mm/rev, respectively.

Fig. 15. Roughness standard deviations of original experiment versus con-
firmation run.

Fig. 16. 95% confidence ellipses of model estimators.

Table 11
Confirmation runs modeled by location and scale estimators for Models A–D.

Run Location and scale response surfaces

A B C D

x̄ s x̃ MAD x̃H2 sH2 HLn Sn

1 1.276 0.346 1.281 0.370 1.276 0.392 1.276 0.371
2 1.257 0.367 1.224 0.404 1.257 0.417 1.257 0.516
3 1.252 0.541 1.231 0.660 1.252 0.613 1.252 0.962
4 1.348 0.415 1.382 0.444 1.348 0.470 1.348 0.463
5 1.373 0.466 1.252 0.362 1.373 0.529 1.373 0.554
Centroid 1.301 0.388 1.281 0.555 1.300 0.437 1.295 0.561
CI UBa 1.437 0.581 1.438 0.855 1.435 0.655 1.430 1.118
Pareto 1.461 0.533 1.244 0.569 1.501 0.782 1.491 0.692
CI LBb 1.166 0.195 1.124 0.255 1.164 0.218 1.159 0.003
SST 1.956 – 1.786 – 1.985 – 1.974 –

Note: The values in bold represent the best RPD solution.
a CI UB: Multivariate upper bound for confidence interval.
b CI LB: Multivariate lower bound for confidence interval.

Table 12
Confirmation runs modeled by location and scale estimators for Models E–H.

Run Location and scale response surfaces

E F G H

HLn Qn x̃τ sτ HLn MAD x̃MLE SMLE

1 1.276 0.372 1.279 0.312 1.276 0.370 1.276 0.300
2 1.257 0.516 1.241 0.331 1.257 0.404 1.279 0.287
3 1.252 0.963 1.246 0.487 1.252 0.660 1.252 0.469
4 1.348 0.463 1.367 0.374 1.348 0.444 1.336 0.339
5 1.373 0.555 1.255 0.438 1.373 0.362 1.435 0.331
Centroid 1.295 0.370 1.293 0.393 1.295 0.555 1.301 0.378
CI UBa 1.430 0.928 1.421 0.573 1.430 0.855 1.481 0.555
Pareto 1.491 0.612 1.235 0.635 1.491 0.569 1.502 0.487
CI LBb 1.159 −0.188 1.165 0.214 1.159 0.255 1.121 0.201
SST 1.974 – 1.788 – 1.974 – 1.987 –

Note.
a CI UB: Multivariate upper bound for confidence interval.
b CI LB: Multivariate lower bound for confidence interval.

Table 13
Center point experimental run for AISI 12L14 turning.

n ϕ 30mm –
VB=0.0

ϕ 50mm –
VB=0.0

ϕ 30mm –
VB=0.3

ϕ 50mm –
VB=0.3

1 1.213 1.168 1.798 2.388
2 1.253 1.178 1.900 2.095
3 1.183 1.183 1.670 2.123
4 1.188 1.188 1.730 2.600
5 1.213 1.193 1.893 2.895
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The roughness value for the workpiece machined with f=0.100 mm/
rev were larger than the one machined with f=0.084 mm/rev in-
dicating the optimal setup trough the NBI-MMSE method.

In parallel, the Energy Dispersive X-ray Spectrometry (EDS) was
done which makes use of the X-ray spectrum emitted by a solid sample
bombarded with a focused beam of electrons to obtain a localized
chemical analysis. All elements from atomic number 4 (Be) to 92 (U)
can be detected in principle, though not all instruments are equipped
for 'light' elements as the carbon and nitrogen existing in the AISI 12L14
steel according to the chemical elements detailed in Table 14 and also
in Figs. 23 and 24.

6. Comparison with genetic algorithm

The extension of NBI–MMSE approach was evaluated in order to
extent their methodology and determines how the results improve
against the modern genetic intelligence algorithms. Therefore, the ga-
multiobj function which find Pareto front of multiple fitness functions

using genetic algorithm was implemented.

6.1. MMSE functions optimization through algorithm genetic

Considering Eq. (32) in which was detailed the objective functions
to be optimized in terms of MMSE, the multi-objective genetic algo-
rithm was running with the experimental restriction = ≤g x x x ρ¯ ( ) T

2
2

and with lower and upper bounds for each input parameter according
to the description in Appendix A. This optimization was performed in
MATLAB® R2015a.

Fig. 25 shows the optimal points found by the gamultiobj function as
detailed in Table 15. In sequence, these optimal values were replaced in
Eq. (32) in order to find the functions in terms of MMSE. Considering
MMSE values, the Pareto frontier obtained by the GRG algorithm
(Fig. 10) was plotted together as shown in Fig. 26. It is possible to
notice that the frontiers are practically overlapping and thus re-
affirming that the proposed method is capable of generating convex
frontiers independent of the algorithm.

6.2. Optimization of original functions modeled by robust estimators

In order to verify the robustness of the research methodology pro-
posed through 8 steps detailed in Fig. 5, the gamultiobj function was
applied in the 13 original responses obtained by the roughness (Ra)
modeling as shown in Table 5. The objective of this optimization is to
show the importance of the 8 steps proposed in the modeling stage that
affect the problem optimal setups according to the description in
Appendix B.

After the optimization performed by the MATLAB®, Table 16 shows
the optimal points found by the gamultiobj function. In sequence, these
optimal values were replaced in Eq. (32) in order to find the functions
in terms of MMSE. Considering the MMSE values in Table 16, the Pareto
frontier obtained by the GRG algorithm (Fig. 10) was plotted together
as shown in Fig. 27. It is possible to notice that the frontier defined by 8
steps proposed herein (NBI-MMSE algorithm of optimization) has
dominance in relation to the optimal points obtained by the gamultiobj
function.

Fig. 17. Roughness standard deviations of machining parameters run.

Vc = 273.853 [m/min],  f = 0.084 [mm/rev], d = 0.581 [mm]
(b) Setup of comparison: 
Vc = 280.00 [m/min], f = 0.10 [mm/rev], d = 0.95 [mm]

Fig. 18. Surface finish chart fancy machining of (a) confirmation run and (b) center point run.
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7. Conclusion

In this paper, the use of robust estimators to model the surface
roughness of an AISI 12L14 steel turning process was presented. The
main contribution of this paper consists of the application and

contextualization of PCA to determine the process parameter setups
that are capable of reducing the surface roughness dispersion along
with multivariate optimization techniques. Accordingly, a novel algo-
rithm considering objective functions in terms of the MMSE values,
which were optimized through the NBI method, was proposed to obtain
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Fig. 19. Profile measure of optimal setup.
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Fig. 20. Profile measure of setup of comparison (center point).

0.786 m

Fig. 21. Distance between peaks for the optimal setup (f=0.084 mm/rev).
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a feasible solution represented by a Pareto frontier. Consequently, an-
other contribution is defining the Pareto optimal point by using fuzzy
DM reinforced by the 95% confidence ellipses of the estimators' models
for confirmation runs.

Therefore, taking into account all the discussions presented in the
proposed steps, we can conclude the following:

• Noise conditions intrinsic in the turning process provide the non-
normality of the data (not stationary), thus providing variation with
extreme points. This scenario emphasizes the use of robust estima-
tors to model the data.

• Optimization of the surface roughness centrality and dispersion
models was done by using the NBI method, thus assuring convex
frontiers and equispaced optimal points.

• The MMSE minimizes all the original responses simultaneously with
their respective targets expressed in terms of principal components
to obtain a solution that considers the best of all estimators.

• With the fuzzy DM algorithm, it is possible to define the best process
input parameters as Vc=273.853 [m/min], f=0.084 [mm/rev],
and d=0.583 [mm].

• Experimental confirmation runs were able to obtain the optimum
output values defined by the algorithm.

• The 95% confidence ellipses considering the data obtained through
the confirmation runs define which pair of estimators performs best
models the experimental data under noise conditions. It was de-
termined that Model B (which comprises the nonparametric

1.278 m

Fig. 22. Distance between peaks for the setup of comparison (f=0.100 mm/rev).

Table 14
Chemical composition of AISI 12L14.

%C %Si %Mn %P %S %Cr %Ni %Cu %Al %Mo %Pb %N

0.090 0.030 1.240 0.046 0.273 0.150 0.080 0.260 0.001 0.020 0.280 0.0079

Fig. 23. Chemical elements in AISI 12L14 steel.
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estimators as the median and the MAD) is better. Consequently, the
centrality value of Ra is 1.281 with a minimal value of dispersion of
0.555.

• In situations where the experimental responses are influenced by the
presence of noise, the modeling can be performed with robust es-
timators that cancel or minimize this influence. However, the use of
parameter estimators is not discarded.

• In order to verify the robustness of the optimal setup defined by the
NBI-MSSE proposed method, it was compared with the center point
setup. Through roughness pictures it is possible to reaffirming that
the surface finish is better than the others;

• Optimal points were also defined by the multi-objective genetic al-
gorithm (MOGA) which proved the efficiency of the modeling pro-
posed stages.

Fig. 24. Chemical elements in AISI 12L14 steel in isolation.

Fig. 25. Pareto front of f x¯ ( )1 and f x¯ ( )2 scalarized.

Table 15
Optimum values obtained by MMSE functions optimization.

f x¯ ( )1 f x¯ ( )2 x1 (Vc) x2 (f) x3 (d) MMSE11 MMSE2T

1 0.025 3.348 −0.436 −0.699 −1.467 4.137 4.934
2 0.105 2.099 −0.785 −0.686 −1.318 5.136 4.200
3 0.915 0.736 −1.362 −0.866 −0.472 15.255 3.213
4 0.269 1.513 −1.009 −0.721 −1.095 7.185 3.807
5 0.149 1.837 −0.848 −0.801 −1.209 5.687 4.029
6 0.075 2.434 −0.685 −0.700 −1.365 4.762 4.409
7 1.131 0.718 −1.394 −0.888 −0.309 17.961 3.198
8 0.038 3.022 −0.522 −0.701 −1.436 4.303 4.754
9 0.611 0.850 −1.300 −0.775 −0.735 11.455 3.307
10 0.025 3.348 −0.436 −0.699 −1.467 4.137 4.934
11 0.208 1.617 −0.946 −0.755 −1.152 6.420 3.880
12 0.854 0.762 −1.336 −0.875 −0.519 14.496 3.234
13 0.505 0.951 −1.236 −0.779 −0.829 10.138 3.388
14 0.395 1.054 −1.196 −0.687 −0.958 8.763 3.468
15 0.055 2.765 −0.597 −0.699 −1.403 4.513 4.606
16 0.323 1.344 −1.071 −0.732 −1.030 7.864 3.686
17 0.390 1.144 −1.159 −0.703 −0.965 8.699 3.538
18 1.111 0.734 −1.370 −0.905 −0.324 17.711 3.211

Fig. 26. Comparative Pareto frontier between genetic algorithm and NBI-
MMSE algorithm.

Table 16
Optimum values obtained by the optimization of roughness modeled responses.

x1 (Vc) x2 (f) x3 (d) MMSE11 MMSE2T

1 −1.196 −0.961 −0.671 11.769 3.375
2 −1.450 −0.814 −0.247 19.076 3.212
3 −1.188 −0.921 −0.742 10.863 3.405
4 −1.458 −0.682 −0.472 15.530 3.197
5 −1.095 −0.908 −0.894 8.784 3.551
6 −0.559 1.505 0.504 4.542 11.309
7 −0.357 −0.959 −1.299 4.407 5.119
8 −0.320 1.566 0.514 4.629 11.513
9 −1.450 −0.814 0.253 27.452 3.838
10 −0.816 −0.937 −1.097 6.292 4.080
11 −1.411 −0.877 0.253 27.695 3.816
12 0.442 −1.007 −1.256 4.260 6.732
13 −0.011 0.891 −1.222 8.490 10.495
14 −0.148 1.255 0.590 9.432 13.903
15 0.411 −0.985 −1.291 4.141 6.639
16 −0.320 1.566 0.514 4.629 11.513
17 −0.410 1.192 −0.291 9.734 12.901
18 −1.154 0.591 −0.578 10.902 7.095

Fig. 27. Comparative Pareto frontier between NBI-MMSE algorithm and
roughness responses optimized by genetic algorithm.
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The proposed method can identify the optimal solution within the
limits specified for the machining process to obtain the most efficient
production. Another relevant factor is that the method becomes more
advantageous as the number of functions increases because it enables a
dimensionality reduction that leads to computational advantages.

Finally, the decision-making process in the manufacturing en-
vironment is increasingly difficult owing to the rapid changes in design
and demand for quality products. Therefore, industries need to main-
tain machined surface quality and can consequently reduce inspection
costs and increase productivity. The proposed method can be easily
extended to other machining processes so that environmental concerns
can be well addressed together with the objectives of productivity and
quality.
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